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I          INTRODUCTION 

 

The study of the flow field created by the moving surface in a quiescent fluid is relevant to several 

practical applications in the field of metallurgy and chemical engineering. A number of technical 

processes concerning polymers involve the cooling of continuous strips or filaments by drawing them 

through quiescent fluid. In these cases the properties of the final product depend to a great extent on the 

rate of cooling which governed by the structure of the boundary layer near the moving strips. Sakiadis 

(1931) was the first to study the boundary layer flow due to a moving continuously stretching surface in 

a fluid at rest. Since then different aspects of the flow past over a continuous moving surface have been 

investigated by different researchers under different conditions. Several investigators have studied 

different dimensions of the boundary layer flow of electrically conducting fluid and heat transfer due to 

stretching sheet in the presence of a transverse magnetic field. 
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 The flow of an electrically conducting fluid past stretching sheet under the effect of a magnetic field has 

attracted the attention of many researchers in view of its wide applications in many engineering 

problems such as magneto hydrodynamic (MHD) generator, plasma studies, nuclear reactors, oil 

exploration, geothermal energy extraction, and the boundary layer control in the field of aero dynamics. 

Consequently, Ishak (2010) has studied unsteady laminar magneto hydrodynamic (MHD) flow and heat 

transfer due to continuously stretching plate immersed in an electrically conducting fluid. The result 

shows that heat transfer rate at the surface increases with an increase in unsteadiness parameter and 

Prandtl number Pr, but decreases with an increase in the values of magnetic parameter M. 

     Ishak et al. (2009) have analyzed the boundary-layer flow and heat transfer due to a stretching 

vertical surface. They discussed the effects of unsteadiness parameter, buoyancy parameter and Prandtl 

number on the flow and heat transfer characteristics. They indicated that the heat transfer rate at the 

surface increases with an increase in unsteadiness parameter, buoyancy parameter and Prandtl number. 

Elbashbeshy (1998) analyzed heat transfer over a stretching surface with variable surface heat flux. His 

result indicates that suction increases the heat transfer from the surface, where as injection causes a 

decrease in the heat transfer. Elbashbeshy et al. and Zheng (2010, 2011) studied heat transfer over an 

unsteady stretching surface in the presence of a heat source or sink. The numerical results reveal that the 

momentum boundary layer thickness decreases with an increase in unsteadiness parameter. However, an 

increase in the unsteadiness parameter increases the skin friction coefficient and the local Nusslet 

number. Saleh (2007) studied the flow and heat transfer of two dimensional electrically conducting 

viscous fluid on a continuously stretching surface in the presence of suction/blowing with variable 

viscosity and thermal conductivity. Samad and Mohebujjaman (2009) studied a steady-state two 

dimensional magneto hydrodynamic heats and mass transfer free convection flow along a vertical 

stretching sheet in the presence of a magnetic field with heat generation. Fadzilah et al. (2011) studied 

the steady magneto-hydrodynamic boundary layer flow and heat transfer of a viscous and electrically 
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conducting fluid over a stretching sheet with an induced magnetic field. The results of their study show 

that the velocity and induced magnetic field increase with an increase in the applied magnetic field. 

The problem of heat transfer from boundary layer flow driven by a continuous moving surface is of 

importance in a number of industrial manufacturing processes. Several authors have been analysed in 

various aspects of the pioneering work of Sakiadis (1931). Crane (1970) have investigated the steady 

boundary layer flow due to stretching with linear velocity. Vleggaar et al. (1977) have analysed the 

stretching problem with constant surface temperature and Soundalgekar et al. (1980) have analysed the 

constant surface velocity. 

Hashim et al. (2003) applied Adomian decomposition method to the classical Blasius equation. Wazwaz 

(1997) used Adomian decomposition method to solve the boundary layer equation of viscous flow due 

to a moving sheet. Awang Kechil and Hashim (2009) used Adomian decomposition method to get the 

approximate analytical solution of an unsteady boundary layer problem over an impulsively stretching 

sheet. 

Awang Kechil and Hashim (2009) applied Adomian decomposition method to a two by two system of 

nonlinear ordinary differential equations of free-convective boundary layer equation. Hayat et al. (2009) 

analysed the MHD flow over a nonlinearly stretching sheet by employing the Modified Adomian 

decomposition method. 

II .  FORMULATION OF THE PROBLEM 

The formulation of the problem presented by Wubshet Ibrahim et al. (2012) is described below. 

           Consider the unsteady two-dimensional laminar boundary layer flow of an incompressible fluid 

moving over a continuously stretching sheet immersed in an incompressible electrically conducting fluid 

with heat source or sink. The flow is subjected to a transverse magnetic field of strength B which is 
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assumed to be applied in the positive y-direction, normal to the surface. We also assume that the sheet is 

stretched 

With the stretching velocity Uw (x , t*) = 
𝑎𝑥

1−𝛾𝑡∗
 along the x axis. The surface temperature of the sheet is 

Tw (x , t*) = 𝑇∞ +  
𝑏𝑥

1−𝛾𝑡∗ and the transverse unsteady magnetic field strength applied to the sheet is B( t*) 

= 
𝐵0

√1−𝛾𝑡∗
. Where a , b and 𝛾 are constants, a ≥ 0 ,  b ≥ 0 ,   𝛾 ≥ 0 and 𝛾𝑡∗ ≤ 1, time is denoted by t*  

Both a and  𝛾 have dimension (time)-1  𝑇∞ is ambient temperature,B0 is constant magnetic field. Under 

these assumptions, along with the boundary-layer approximations, the unsteady boundary layer 

equations governing the flow and heat transfer as it was given by Elbashbeshy (2010). 

The basic boundary layer equations that govern momentum and energy respectively are 

𝜕𝑢

𝜕𝑥
 + 

𝜕𝑣

𝜕𝑦
 = 0       (2.1) 

𝜕𝑢

𝜕𝑡∗ + u 
𝜕𝑢

𝜕𝑥
 + v  

𝜕𝑢

𝜕𝑦
 = v 

𝜕2𝑢

𝜕𝑦2 – 𝜎 
𝛽2𝑢

𝜌
    (2.2) 

𝜕𝑇

𝜕𝑡∗ + u 
𝜕𝑇

𝜕𝑥
 + v  

𝜕𝑇

𝜕𝑦
 = ∝ 

𝜕2𝑇

𝜕𝑦2  + 
𝑄

𝜌𝑐𝜌
 (T- T∞)   (2.3) 

subject to the boundary conditions 

y = 0 : u = uw (x, 𝑡∗) ,    v = 0 , T (x, 𝑡∗) = Tw ( x , t)  

y→ ∞  : u = 0,    T = 𝑇∞                                                         (2.4) 

 

where u and v are the velocity components in the the x and y directions respectively, T is the fluid 

temperature inside the boundary layer, t is the time, k is the thermal conductivity, ν is the kinematics 

viscosity, cp is the specific heat at constant pressure, 𝜌 is the density, Q>0 represents a heat source and 

Q <0 represents a heat sink , 𝑇∞ is the temperature far away from the stretching sheet. 
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The equation of continuity is satisfied if we choose a stream function ψ(x, y) such that 

u = 
𝜕𝛹

𝜕𝑦
 ,    v = 

−𝜕𝛹

𝜕𝑥
. 

The mathematical analysis of the problem is simplified by introducing the following dimensionless 

similarity variables: 

𝜂 = √
𝑎

𝑣(1−𝛾𝑡∗ )
y 

 ψ(x, y) =  √
𝑎𝑣𝑥

(1−𝛾𝑡∗ )
f(𝜂) (2.5) 

𝜃(𝜂) = 
𝑇−𝑇0

𝑇𝑤−𝑇∞

 

Substituting (2.5) into (2.2) and (2.3), we obtain the following set of ordinary differential equations:  

𝑓′′′+𝑓𝑓′′–𝑓′2 − 𝑀𝑓′ − A(𝑓′ +  
1

2
𝜂𝑓′′) = 0       (2.6) 

𝜃′′ + Pr [𝑓𝜃′ −  𝑓′𝜃 −  
𝐴

2
( 𝜃 +  𝜂𝜃′) +  𝛿𝜃] = 0                                             (2.7) 

The boundary conditions (2.4) now become 
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𝜂 = 0:     f = 0,  𝑓′ = 1,       𝜃 = 1 

𝜂→ ∞ :               𝑓′ = 0,                  𝜃 = 0                                                                   (2.8) 

where the primes denote differentiation with respect to 𝜂, A = 
𝛾

𝛼
 is a parameter that measures the 

unsteadiness, Pr = 
𝜇𝐶𝑝

𝑘
 is the prandtl number ( 𝜇 is the viscosity), 

 𝛿 =  
𝑄𝑘

𝜇𝐶𝜌

𝑅𝑒𝑥

𝑅𝑒𝑘
2 is the dimensionless heat source or sink parameter, R𝑒𝑥= 

𝑈𝑤𝑥

𝑣
 is the local Reynolds number 

, M = 
𝜎(𝐵0)2

𝜌𝑎
  is the magnetic parameter and  R𝑒𝑥= 

𝑈𝑤√𝑘

𝑣
 .  The  physical quantities of interest in this 

problem are the skin friction coefficient 𝐶𝑓 and the local Nusselt number N𝑢𝑥  which are defined as 

𝐶𝑓 = 
𝜇(

𝜕𝑢

𝜕𝑦
)

𝑦=0

[𝜌𝑈𝑤
2 /2]

   ,    𝑁𝑢𝑥 =  
−𝑥(

𝜕𝑇

𝜕𝑦
)

𝑦 = 0

𝑇𝑤− 𝑇∞
 

 

𝐶𝑓√𝑅𝑒𝑥 = 𝑓′′(0) ,          
𝑁𝑢𝑥

√𝑅𝑒𝑥
 = -

1

𝜃(0)
       where 𝑅𝑒𝑥 = 

𝑥𝑈𝑤

𝑣
   is the local  Reynolds number based on the surface 

velocity. 

III.  ANALYTIC SOLUTION 

The analytic solution for the above coupled ordinary differential Eqs. (2.6) and (2.7) for different values 

of unsteadiness parameter A, magnetic parameter M, heat source or sink parameter  and Prandtl 

number Pr is obtained using Adomian decomposition method and homotopy perturbation method with 

Padé approximants. 
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3.1  FUZZY ADOMIAN DECOMPOSITION METHOD 

 

Using Adomian decomposition method, rearranging (2.3) and (2.7) as follows 

 

𝑓′′′= -𝑓𝑓′′ + 𝑓′2 + M𝑓′ + A(𝑓′ +  
1

2
𝜂𝑓′′)                         (3.1) 

 

𝜃′′ = -Pr[𝑓𝜃′ − 𝑓′𝜃 −
𝐴

2
(𝜃 + 𝜂𝜃′) +  𝛿𝜃]                         (3.2) 

 

While applying the standard procedure of ADM 

Eqs (3.1) and (3.2) becomes 

𝐿1f = (−𝑓𝑓′′ +  𝑓′2 +  𝑀𝑓′ +  𝐴 (𝑓′ +  
1

2
𝜂𝑓′′))                            (3.3) 

 

𝐿2𝜃 = -Pr([𝑓𝜃′ − 𝑓′𝜃 −
𝐴

2
(𝜃 +  𝜂𝜃′) +  𝛿𝜃])                                 (3.4) 

 

Where  

 

𝐿1
−1(.) = ∫ ∫ ∫ (. )𝑑𝜂𝑑𝜂𝑑𝜂

𝜂

0

𝜂

0

𝜂

0
   and   𝐿2

−1(.) = ∫ ∫ (. )𝑑𝜂𝑑𝜂
𝜂

0

𝜂

0
 

 

Applying the inverse operator on both sides of (3.3) and (3.4) 

 

𝐿1
−1𝐿1f = 𝐿1

−1 (−𝑓𝑓′′ +  𝑓′2 + 𝑀𝑓′ +  𝐴 (𝑓′ +  
1

2
𝜂𝑓′′))                            (3.5) 

 

𝐿2
−1𝐿2𝜃 = -Pr𝐿2

−1 ([𝑓𝜃′ − 𝑓′𝜃 −
𝐴

2
(𝜃 +  𝜂𝜃′) +  𝛿𝜃])                                 (3.6) 

 

Simplify eqs (3.5) and (3.6) we get 

 

http://www.jetir.org/


© 2018 JETIR June 2018, Volume 5, Issue 6                                           www.jetir.org  (ISSN-2349-5162)  

JETIR1806632 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 185 

 

𝑓(𝜂) = 𝜂 + 
𝛼1𝜂2

2
 + ∫ ∫ ∫ [−𝑁1(𝑓) +  𝑁2(𝑓) +  𝑀𝑓′ + 𝐴 (𝑓′ +  

1

2
𝜂𝑓′′)] 𝑑

𝜂

0

𝜂

0

𝜂

0
𝜂𝑑𝜂𝑑𝜂 

 (3.7) 

And 

 

             𝜃(𝜂) = 𝛼2- 𝜂-Pr ∫ ∫ [𝑁3(𝑓, 𝜃) − 𝑁4(𝑓, 𝜃) +  −
𝐴

2
(𝜃 +  𝜂𝜃′) +  𝛿𝜃]

𝜂

0

𝜂

0
 d𝜂𝑑𝜂     (3.8) 

 

            Where  𝛼1 = 𝑓′′(0)    and     𝛼2 =  𝜃(0)   are to be determined from the boundary  

conditions at  infinity in (2.8) .  The nonlinear terms 𝑓′′, 𝑓′2, 𝑓𝜃′  and 𝑓′𝜃  can be decomposed as  

Adomain polynomials ∑ 𝐵𝑛
∞
𝑛=0 ,   ∑ 𝐶𝑛

∞
𝑛=0 ,  ∑ 𝐷𝑛

∞
𝑛=0   and  ∑ 𝐸𝑛

∞
𝑛=0  as follows 

 

          𝑁1(f) =  ∑ 𝐵𝑛
∞
𝑛=0  = 𝑓𝑓′′                                                                                             (3.9) 

 

𝑁2(f) =   ∑ 𝐶𝑛

∞

𝑛=0

 =   ( 𝑓′ )2                                                                                             (3.10) 

 

          

𝑁3(f , θ) =   ∑ 𝐷𝑛

∞

𝑛=0

=    fθ′                                                                                             (3.11) 

 

𝑁4(f , θ) =   ∑ 𝐸𝑛

∞

𝑛=0

=    fθ′                                                                                             (3.12) 

 

Where  𝐵𝑛(𝑓0, 𝑓1, … , 𝑓𝑛)        𝐶𝑛(𝑓0, 𝑓1, … , 𝑓𝑛)     and    𝐷𝑛(𝑓0, 𝑓1, … , 𝑓𝑛, 𝜃0, 𝜃1, … , 𝜃𝑛)  

 

 𝐸𝑛(𝑓0, 𝑓1, … , 𝑓𝑛, 𝜃0, 𝜃1, … , 𝜃𝑛)  are  the  so  called  Adomian  polynomials.  In  the 

  Adomian decomposition method (1983) f and θ can be expanded as the infinite series 

 

 

f(𝜂) = ∑ 𝑓𝑛
∞
𝑛=0  = 𝑓0 + 𝑓1 + 𝑓2+…+𝑓𝑚+… 
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𝜃(𝜂) = ∑ 𝜃𝑛
∞
𝑛=0  = 𝜃0 + 𝜃1 + 𝜃2+…+𝜃𝑚+…                                                            (3.13) 

 

Substituting (3.9),(3.10),(3.11) and (3.12) into (3.7) and (3.5) gives 

 

∑ 𝑓𝑛
∞
𝑛=0 (𝜂) = 𝜂 + 

𝛼1η2

2
 + ∫ ∫ ∫ [− ∑ 𝐵𝑛 + ∑ 𝐶𝑛 

∞
𝑛=0

∞
𝑛=0 +  𝑀 ∑ 𝑓𝑛

′∞
𝑛=0  + 𝐴 ∑ (𝑓𝑛

′ +
1

2
𝜂𝑓𝑛

′′)∞
𝑛=0 ]  𝑑𝜂

𝜂

0

𝜂

0

𝜂

0
d𝜂𝑑𝜂                       

            (3.14) 

            And 

  ∑ 𝜃𝑛
∞
𝑛=0 (𝜂) = 𝛼2-𝜂-Pr∫ ∫ [∑ 𝐷𝑛

∞
𝑛=0 − ∑ 𝐸𝑛 − 

𝐴

2

∞
𝑛=0 ∑ (𝜃𝑛 + 𝜂𝜃𝑛

′′) +  𝛿𝜃𝑛 ∞
𝑛=0 ]

𝜂

0

𝜂

0
d 𝜂𝑑𝜂       (3.15) 

 

Hence, the individual terms of the Adomian series solution of the equation (2.3)–(2.C8)  

are provided below by the simple recursive algorithm 

 

𝑓0(𝜂) = 𝜂 + 
𝛼1𝜂2

2
                                                                                                            (3.16) 

 

𝜃0 (𝜂)  =  𝛼2 - 𝜂                                                                                                             (3.17) 

 

𝑓𝑛+1 (𝜂) = ∫ ∫ ∫ [−𝐵𝑛 + 𝐶𝑛 +  𝑀𝑓𝑛
′  + 𝐴 (𝑓𝑛

′ +
1

2
𝜂𝑓𝑛

′′)]  𝑑𝜂
𝜂

0

𝜂

0

𝜂

0
d𝜂𝑑𝜂                          (3.18) 

 

 

 

𝜃𝑛+1(𝜂) = -Pr∫ ∫ [𝐷𝑛 − 𝐸𝑛 + −
𝐴

2
(𝜃𝑛 + 𝜂𝜃𝑛

′ ) + 𝛿𝜃]
𝜂

0

𝜂

0
 d𝜂d𝜂              (3.19)  

 

For practical numerical computation, we take the m-term approximation of f(𝜂)  and  

𝜃(𝜂) 𝑎𝑠    ∅𝑚(𝜂) = ∑ 𝑓𝑛(𝜂)𝑚−1
𝑛=0    and      𝜔𝑚(𝜂) = ∑ 𝜃𝑛(𝜂)𝑚−1

𝑛=0    
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IV. RESULTS ANALYSIS 

 

The recursive algorithms (3.16)–(3.19) are programmed in MATLAB. We have obtained  

upto 15
th

 term of approximations to both f(𝜂) and 𝜃(𝜂). We provided below only first  

few terms due to lack of space. 

 

𝑓0 = 𝜂 + 
𝛼1𝜂2

2
 

 

𝑓1 = (
𝐴

6
+  

1

6
) 𝜂3+(

𝐴𝛼1

16
+  

𝛼1

24
) 𝜂4+ (

𝛼1
2

120
) 𝜂5 

 

𝑓2 = (
−𝛼1

3

40320
) 𝜂8+(

𝛼1
2𝐴

1120
−

𝛼1
2

5040
) 𝜂7+(

𝛼1𝐴2

192
+

𝛼1𝐴

240
+

𝛼1

720
) 𝜂6+(

𝐴2

60
+

𝐴

60
) 𝜂5 

 

And 

 

𝜃0= 𝛼2-𝜂 

 

𝜃1= Pr[(
2𝛼2+𝐴𝛼2−2𝛼2𝛿

4
) 𝜂2 + (

𝛿−𝐴+𝛼1𝛼2

6
) 𝜂3 − (

𝛼1

24
) 𝜂4] 

𝜃2= Pr(
𝛼2

24
+

𝐴𝛼2

24
−

𝑃𝑟𝛼2

24
+

𝐴𝑃𝑟𝛼2

24
+

𝐴2𝑃𝑟𝛼2

32
+

𝑃𝑟𝛼2𝛿2

24
−

𝐴𝑃𝑟𝛼2𝛿

12
) 𝜂4 − 

                   Pr(

𝐴

60
+

𝑃𝑟𝛿

60
−

𝛼1𝛼2

120
+

𝐴2𝑃𝑟

60
+

𝑃𝑟𝛿2

120
−

𝐴𝑃𝑟

60
−

𝐴𝑃𝑟𝛿

40
−

𝐴𝛼1𝛼2

80
𝑃𝑟𝛼1𝛼2

60
−

𝐴𝑃𝑟𝛼1𝛼2

60
+

𝑃𝑟𝛼1𝛼2𝛿

120
+

1

60

) 𝜂5 

                  -Pr(
−𝛼1

240
+

𝐴𝛼1

160
−

𝑃𝑟𝛼1

240
−

𝛼1
2𝛼2

720
+

𝐴𝑃𝑟𝛼1

1440
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   The undetermined values of 𝛼1 and 𝛼2 are computed using the boundary condition at infinity in 

 (2.8). The difficulty at infinity is tackled by applying the diagonal Pad𝑒́ approximants Boyd 

 (1997) that approximate 𝑓′(𝜂) and 𝜃(𝜂) using ∅15
′ (𝜂) and 𝜔15(𝜂) applying infinity to the  

diagonal  Pad𝑒́ approximants [N/N] that approximates  𝑓′(𝜂) and 𝜃(𝜂) ranging of N from 2 to 10  

provides a two by two system of non linear algebraic equation, then obtained nonlinear system  

are solved by employing Newton Raphson method. 

 

 

 

 

 

 

 

 
 

Fig.1. Velocity for different values of A, when M = 1,  = 1, and Pr = 1. 

 

 

 

 

 

 

  

 

 

Fig.2. Velocity graph for different values of A, when M = 1,  = 0, and Pr = 0.72 
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Fig.3. Velocity graph for different values of M, when A = 1,  = 1, and Pr = 0.72. 

 

 

 

 

 
  
 

 

 

 

 

Fig.4. Temperature graph for different values of A, when M = 1,  =-1, and Pr = 0.72. 
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Fig.5. Temperature graph for different values of Pr, when M = 1,  = 1, and A = 1.2. 

 

 

 

 

 

 

 

 

Fig.6. Temperature graph for different values of Pr, when M = 1,  =-1, and A = 1.2. 
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Fig.7. Temperature graph for different values of M, when Pr = 0.72,  = 1, and A = 1.2. 

 

 

 

 

 

 

 

 

 

 

Fig.8. Temperature graph for different values of  , for the case of heat sink when 

 

A = 1.2, M = 1, and Pr = 1. 
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Fig.9. Temperature graph for different values of  , for the case of heat source when 

 

A = 1.2, M = 1, and Pr = 1. 

Figs. 1–3 show the velocity graphs for different values of A and M, respectively, when the other 

parameters are fixed. Figs. 1 and 2 indicate that the velocity graph decreases as the unsteadiness 

parameters increase. This is due to the fact that the velocity boundary layer thickness decreases as 

unsteadiness parameter A increases. This results in the reduction of velocity graph. Fig. 3 reveals the 

influence of magnetic parameter M on flow field. It is observed that flow velocity decreases with an 

increase in the magnetic characteristic. Moreover, the velocity approaches to zero as the distance from 

the sheet increases. The similarity solution for the dimensionless velocity in Figs. 2–4 also shows that 

the velocity boundary layer thickness decreases monotonically when unsteadiness parameter A and 

magnetic parameter M increases. Moreover, the graphs show that velocity gradient on the surface of a 

stretching sheet increases with an increase in both parameters A and M. 
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Figs. 5–9 represent the variation of temperature with respect to the governing parameters, namely, 

unsteadiness parameter A, magnetic parameter M, heat source or sink parameter  and Prandtl number 

Pr. Fig. 5 shows that the variation of temperature with respect to unsteadiness parameter A when the 

other parameters are fixed. It shows that the temperature decreases as the values of parameter A 

increases. This is due to the fact the heat transfer rate increases with an increase in unsteadiness 

parameters. This leads to a reduction in temperature. Figs. 3, 7 represent the variation of temperature 

with respect to Prandtl number Pr for both heat source and sink. The graphs show that the temperature 

graph decreases when the values of Prandtl number Pr increase. This is due to the fact that a higher 

Prandtl number fluid has relatively low thermal conductivity, which reduce the conduction and thermal 

boundary layer thickness and as a result a temperature decrease. From the graph it is possible to see that 

thermal boundary layer thickness for heat source is thicker than heat sink. 

Fig. 7 represents the variation of temperature with respect to magnetic parameter M when other 

parameters are fixed. It reveals that the temperature decreases with an increase of magnetic parameter. 

This is due to additional work expended in dragging the fluid in the boundary layer against the action of 

the Lorentz force and energy is dissipated as thermal energy which heats the fluid. This induces a rise in 

temperature. Furthermore, the graph shows that the thermal boundary-layer thickness slightly increases 

with an increase in magnetic parameter M. Fig. 8 shows the variation of temperature with respect to heat 

sink while other parameters are fixed. When heat sink increases more heat removed from the 

 

sheet which reduces the thermal boundary-layer thickness. This reduce the temperature of the sheet. 
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Fig. 9 illustrates the variation of temperature with respect to heat source. It is observed that when heat 

source increases the temperature is increases. This due to the fact that heat source can add more heat to 

the stretching sheet which increases its temperature. This increases the thermal boundary layer 

thickness. In order to check the accuracy of the numerical solutions, a comparison of heat transfer at the 

surface for different values of A and Pr are made with Elbashbeshy (2010). 

V. COCLUSION 

 Fuzzy Adomian decomposition method and Fuzzy homotopy perturbation method have been employed 

to study unsteady MHD boundary-layer flow and heat transfer due to stretching sheet in the presence of 

heat source or sink. The effects of the various governing parameters on the heat transfer characteristic 

were examined. 

 

 

The numerical results of this study show that the skin friction coefficient is in good agreement with 

those obtained by previous investigators in the absence of magnetic parameter, heat source or sink d and 

unsteadiness parameter Pr. The result obtained by this method is more reliable than previous results 

Wubshet Ibrahim et al. (2012). Moreover, the graphs show more physical reality than the previous 

paper. Briefly the above discussion can be summarized as follows: 
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1. Both the velocity and temperature graphs decrease as unsteadiness parameters increases. 

 

2. The thickness of velocity boundary layer decreases with an increase in unsteadiness and magnetic 

parameter. 

 

3. The temperature decreases with an increase in the value of the unsteadiness parameter A, magnetic 

parameter M, heat source or sink parameter  and Prandtl number Pr. 

 

4. The thickness of thermal boundary layer decreases with increase in both unsteadiness and Prandtl 

number parameters and opposite result observed for magnetic parameter. 

 

5. An increment in unsteadiness parameter A increases both the skin friction coefficients and local 

Nusslet number. 

 

3. An increases in magnetic parameter M increases the skin friction coefficient. 

 

7. An increment in heat source or sink reduces the local Nusselt number. 

 

8. As the values of Prandtl number increase, the local Nusselt number also increases. 

 

9.The wall temperature gradient decreases with increasing unsteadiness parameter and Prandtl number. 
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